
Position-Aware Neural Attentive Graph Networks for Multi-hop Question
Answering

Ege Ersü, Yifu Qiu, Anda Zhou
The University of Edinburgh

School of Informatics

Abstract
Recently there has been considerable interest in
applying graph neural networks (GNN) to multi-
hop question answering (QA) tasks, as graph rep-
resentations can explicitly express rich dependen-
cies in language. However, graph representations
suffer from the loss of sequential information
and the difficulty of representing global semantic
information. In this work, we propose the query-
attention mechanism to enhance the GNN-QA
system by utilizing both global and local con-
textual information. We also explore injecting
the positional information into the graph to com-
plement the sequential information. Our experi-
ments are conducted on the WikiHop dataset to al-
low direction comparison with Entity Relational-
Graph Convolutional Networks (De Cao et al.,
2019). Our contributions identify the existence
of position bias in the dataset and our experi-
ment results with ablation study confirms that
our proposed modules improve the generaliza-
tion accuracy by 1.43%.

1. Introduction
Teaching machines to reason is one of the most challeng-
ing tasks in natural language processing (NLP), which not
only requires the understanding of language but also be-
ing capable to identify and extract the supporting facts
to respond to a query. Most previous work in this field
mainly focused on single-document reading comprehen-
sion question answering (QA): the information source for
answering the question is entailed by the given document.
The large-scale open-source QA datasets (Rajpurkar et al.,
2016) enable the end-to-end neural models to become the
state-of-the-art (Seo et al., 2017; Weissenborn et al., 2017).
Recently, question answering based on multiple documents
has been proposed, or Multi-hop question answering (Multi-
hop QA). Compared with single-document QA, multi-hop
QA is more challenging as it requires reasoning across a
number of given supports documents, and the system can-
not achieve promising performance by solely relying on
local information in any single support.

Although Multi-hop QA is intended to evaluate the rea-
soning of QA system in multi-document scenarios, one of
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Figure 1. Top panel: Illustration for the multi-hop question an-
swering task on WIKI_DEV_002 sample. Multi-hop reasoning
requires the aggregation of information from different supports.
Bottom panel: Entity Graph representation proposed in (De Cao
et al., 2019). We do not show the COMPLEMENT edges for brevity.

the feasible solutions is still to extend the model on single-
document QA. In (Welbl et al., 2018), they reported the
performances of several state-of-the-art RNN-based mod-
els including BiDAF (Seo et al., 2017) and FastQA (Weis-
senborn et al., 2017) by concatenating all supporting docu-
ments into one. Although the RNN-based model still beats
the baselines of the rule-based model, such naive solution
bears the harm in performance by its relational inductive
bias (Battaglia et al., 2018) in its sequential structure. The
RNN-based model essentially discards the parallel structure
of multiple supports, and the long-term forgetting problem
becomes serious when taking long sequence as input.

With the recent rise of the graph neural network (GNN),
another method being studied is to represent text in a struc-
tured form, i.e., graph, and assume the message passing
mechanism in GNN can explicitly aggregate different sup-
porting information over the graph (De Cao et al., 2019;
Ding et al., 2019; Qiu et al., 2019; Thayaparan et al., 2019).
Nevertheless, the graph-based text representation has short-
comings: compared with RNN-based text encoding, RNN’s
recurrent structure naturally captures the sequential prop-
erty of text, but the graph representation treats each se-
mantic unit (Peyrard, 2019) as parallel nodes connected by
specified relationships, which essentially lose the order of
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Min Max Avg. Median
# candidates (WikiHop) 2 79 19.8 14
# documents (WikiHop) 3 63 13.7 11
# tokens/doc. (WikiHop) 4 2,046 100.4 91

# candidates (ours) 2 70 20 20
# documents (ours) 3 61 13.8 12
# tokens/doc. (ours) 7 1,925 98.9 89

Table 1. Comparison of training set statistics between our splited
sub-dataset (7,891 samples) and full WikiHop dataset (43,738
samples) (Welbl et al., 2018).

words in language. Additionally, RNN can not only gener-
ate the local embedding for tokens at each encoding step
but also the global representation for the whole sequence
in its hidden states. However, though graph pooling, e.g.,
average, provide some heuristics for encoding the graph, it
is still difficult to encode with specific to downstream task
like RNN via an fully data-driven fashion.

We argue that both shortcomings are crucial for the GNN-
QA system with entity graph: 1) sequential information is
important for learning contextual information, while GNN-
QA system relies heavily on the entity’s context to inference
correct answers. 2) similar to other NLP tasks (Cohn et al.,
2016; Ko et al., 2020), Multi-hop QA has the position
bias, i.e., the position of each entity mentions contains
the information to discriminate whether it is an answer, 3)
global contextual representation of graph should improve
the model by learning to enhance the importance of answer
nodes with specific to query.

To tackle the aforementioned defects in the GNN-QA sys-
tem, we propose Position-aware Query-Attention Graph
Networks (Pos-QAGN) in this paper. Inspired by the po-
sitional embedding in Transformer (Vaswani et al., 2017),
we complement the discarded sequential information in
GNN by injecting the positional embedding into nodes,
and compare two types of injection. A QA-specific query-
attention mechanism is further designed to enhance the
global representation. We experiment our model with the
Entity Relational-Graph Convolutional Network (Entity-
RGCN) in (De Cao et al., 2019) as our backbone 1 on part
of WikiHop dataset (Welbl et al., 2018). In order to com-
pare with the baseline on our sub-data set, we reproduced
the Entity-RGCN model and improved the offline graph
generation algorithm with more lightweight storage require-
ment. The experiment results show that our full Pos-QAGN
model with late positional injection achieves over 1.43%
improvement over the Entity-RGCN baseline model report
by us. Furthermore, we both quantitatively and qualitatively
analyzed the position bias and query-attention mechanism,
which verified the effectiveness of the proposed modules.

We summarize our main contributions as followed,

• We reproduced and open sourced the first community
version of Entity-RGCN in (De Cao et al., 2019) with
an storage efficient solution, in which we reduce the
storage requirement at 1TB to around 23GB 2.

1Practically, the positional-aware design and query-attention
mechanism can be applied on any GNN-QA system.

2Our code is available at: https://github.com/egeersu/Multihop-

• We identify the existence of position bias in the Wiki-
Hop dataset (Welbl et al., 2018), and further propose
to complement the lost sequential information in graph
representation of text by positional injection.
• We propose the query-attention mechanism allowing

our model to incorporate both global and local con-
textual information during reasoning. Our empirical
experiment demonstrate its positive contribution on
R-GCN baseline in (De Cao et al., 2019).

2. Data set and task
Data. We conduct our experiment on the WikiHop dataset
(Welbl et al., 2018). Each data sample in WikiHop is a
tuple < q, S q,Cq, a∗ >: q is the query, consisted by a triples
< s, r, o? > where s are the subject, and o? denote the un-
known object entity that the QA system needs to infer. The
r denotes the relation between s, o?. For the details about
constructing WikiHop dataset, please see in (Welbl et al.,
2018). S q is a set of supporting documents for particular
query q. Cq is the set of candidate answers for the query
q, which should entail the ground-truth answer a∗. We
illustrate one WikiHop sample in Figure 1.

Dataset. Limited by computing resources, we split out a
part of the WikiHop dataset (Welbl et al., 2018) for conduct-
ing our experiments. We first select 8,000 samples from
the WikiHop training set to train our models. As there is
no public testing set for WikiHop, we select 1,000 samples
from the WikiHop development set and halve them into our
validation set (500) and test set (500). Then we perform the
same pre-processing procedure as in (De Cao et al., 2019),
which removes the samples that satisfying one of the fol-
lowing criteria: 1) sample contains more than 500 nodes in
its generated entity graph, 2) there is no node in entity graph
corresponding to the answer entity. Finally, there are 7,891
training samples, 486 and 489 samples for validation and
testing in our dataset. We report the comparison of several
statistics between our dataset with the original WikiHop
dataset on number of candidates and support documents
per sample, and the document length in Table 1. It turns out
our small dataset has similar characteristics as the original
one, except that the distribution of candidates number per
sample is more symmetrical.

Task. Following previous notations, we define our task
formally: the goal for Multi-hop QA is to find the correct
answer a∗ for given query q from a set of candidates Cq

by combining multiple facts that are spread across mul-
tiple support documents S q. Specifically, each sample
<q, S q,Cq, a∗ > should satisfy that a∗ ∈ Cq and all enti-
ties in Cq are mentioned in S q.

3. Methodology
In this section we describe 1) offline entity graph construc-
tion algorithm with positional embedding 2) GNN module
for Multi-hop reasoning and 3) the query-attention mecha-

GNN
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Figure 2. Model architecture for our Query-Attentive Relational-Graph Convolutional Networks.

nism which allows the model to utilize the global contextual
information when predicting the answer.

3.1. Entity Graph Construction

Similar to (De Cao et al., 2019), we use the entity graph
formalism to organize and represent the content of sup-
port documents. The nodes of the entity graph consist of
all entity mention spans in support documents where the
mentions should belong to the set of entities in candidate
answers Cq or subject {s} of the query. There are several
heuristics to extract the mentions as a node. Firstly, we
identify the mentions spans in the support document which
exactly matches with the element in the entity set Cq

⋃
{s}.

Then, we use the neural coreference system (Lee et al.,
2017) to add the referent mentions as the nodes. This step
would expand the node set with their noun phrases and
pronouns. As the case is shown in Figure 1, the corefer-
ence predictor successfully identifies "Kamen Rider" as a
referent of "Kamen Rider Den-O", where the latter might
be the key to identify the answer as its "Den-O" token also
occurs in the query. In the end, we discarded the mention
spans which have multiple coreferent chain as suggested
in (De Cao et al., 2019), because it would help the GNN
module to avoid ambiguous propagation of information.

We use the pre-trained ELMo word embedding in (Peters
et al., 2018) as the contextualized node representations.
Each node is assigned with a continuous representation by
averaging over the token embeddings in the span. For the
sake of simplicity, we do not fine-tune parameters for ELMo
embedder in the later online training step. In addition to
baseline setting, we compute the positional embedding
(Vaswani et al., 2017) for each node span based on the
location of its first token,

PE(start,i,2k) = sin(start/100002k/dmodel )

PE(start,i,2k+1) = cos(start/100002k/dmodel )
(1)

where start is the start position of i node and k is the di-
mension. dmodel is the dimension for positional embedding.
We will compare two injections of positional information:

i) Early injection: we add the positional embedding to node
representations before the message passing in GNN mod-
ule, which means we allow the positional information to
participate the local information propagation, ii) Late in-
jection: we inject the positional embedding on the node
representation after message propagation, which will only
affect the global representation and final predictions.

After initializing the nodes, we start to connect the node
pairs by relational edges. As in (De Cao et al., 2019), there
are four types of relations R: 1) COREF: if two nodes are
predicted in the same coreferent chain (Lee et al., 2017). 2)
MATCH: if two node spans are exactly matched with each
other, 3) DOC-BASED: if two nodes are in the same support
document, 4) COMPLEMENT: we add this relation to all node
pairs that did not belong to any of others. The COMPLEMENT
edges is important to prevent disconnected graph by com-
plementing the graph to a fully-connected topology.

3.2. Multi-hop Reasoning by Relational-Graph
Convolutional Network

The core idea of graph neural network (GNN) is to propa-
gate the information contained by each node to its neighbors
in each layer, through a differentiable message passing al-
gorithm. By stacking L share-parameter GNN layers, each
node in the graph can receive the information passed from
its L-hop neighbor nodes, then update its node embedding.
We refer such information propagation as local informa-
tion aggregation, as each node can only communicate with
neighbors in limited distance L.

In our task, we set entity mentions from different documents
and contexts as nodes. Remember the core challenge for
multi-hop QA is the system needs to identify and integrate
the supporting facts from several documents to generate
the answer. Therefore, by adopting the message passing
mechanism in GNN, we can naturally update the node
representations by aggregating the information in other
contexts from its neighbor nodes.

Similar to our baseline (De Cao et al., 2019), we utilize the
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relational-graph convolutional neural networks (R-GCN)
(Schlichtkrull et al., 2018) as the backbone for message
passing. R-GCN is an extension version of the Graph Con-
volutional Networks (Kipf & Welling, 2017), by modeling
different types of edge with separate parameterized weights.
The update of node information in each layer could be
formulated as,

h(l+1)
i = σ(W (l)

0 h(l)
i +
∑
r∈R

∑
j∈Nr

i

1
ci,r

W (l)
r h(l)

j ) (2)

where Nr
i is the set of neighbours of node i with relation

r. hl
i is the hidden vector for node i in layer l. R con-

tains all relation types, i.e., {COREFERENCE, EXACT MATCH,
DOC-BASED, COMPLEMENT}. W (l)

0 ,W
(l)
r are the weights for

node vector in layer l with respect to particular relation r. σ
is the non-linear activation. 1

ci,r
is the normalization factor

which controls how much information are aggregated from
neighbors. ci,r is defined by the in-degree for node i in the
subgraph with single relation r.

3.3. Query-Attention Mechanism

The message passing in GNN provides an efficient way to
aggregate information from neighbors for each node. How-
ever, we argue the global information of the entity graph
is also very important for predicting the answer. A query-
attention mechanism is proposed to learn global contextual
representation for the entity graph depending on the query.

Concretely, we let the query embedding q to attend every
contextualized node embedding after L-hop local propaga-
tion, then compute the attention distribution over all nodes.
To be noticed, each data sample is converted to an entity
graph with a fixed max node number, thus we adopt a node
mask to filter out all the padding nodes. By doing so we can
force the attention mechanism to only focus on the nodes
containing meaningful entity mentions. The calculation for
query-attention weight for each node i is formulated by,

score(q, h(L)
i ) = q>Wah(L)

i (3)

aglobal,i =
exp(score(q, h(L)

i ))∑|V |
i′ exp(score(q, h(L)

i′ ))
(4)

where Wa is the weights for aligning the dimension of
query and node vectors, and V is the set of nodes. Then
the global embedding for entity graph could be calculated
by averaging the node embedding with attention weight
aglobal,i,

hglobal =
1
|V |

∑
aglobal,ih

(L)
i (5)

Intuitively, the global graph representation enables our
model to predict the answer distribution based on both
the local information from neighbors h(L)

i , and the global
information hglobal of the entire graph. The global repre-
sentation is computed according to the importance of dif-
ferent nodes by attending them with the query. Therefore,
query-attention provides a learnable way for our model to
enhancing the representations of those nodes having high
relativeness with the query.

3.4. Model Architecture

Our model is similar to that of (De Cao et al., 2019), and is
depicted in Figure 2, except that we remove some hidden
layers to simplify the model and suit our smaller dataset.
Firstly, a single-layer feed-forward network is adopted to re-
duce the dimension of ELMo embedding for each node, i.e.,
x̃i = fe(xi). Next, we embed the query by a frozen ELMo
embedding layer and apply an extra trainable query encoder
(a single-layer bidirectional LSTM taking the ELMo vector
of each token as input) to generate the query embedding q
by concatenating the forward and backward hidden states.
Then we concatenate the query with each node embedding
and feed them into a single-layer feed-forward network fx

to form the initial node representation h(0)
i and start the local

message passing via a stacked-layer R-GCN as in Eqt. (2),

h(L)
local,i = R-GCNL(

h(0)
local,i︷     ︸︸     ︷

fx([x̃i, q]),NR
i ,C

R
i ) (6)

where h(L)
local,i is i node’s local representation after L layers

R-GCN propagation. NR
i is the neighbours set for node i

specified by the relation r in all relation types R. CR
i stores

the in-degree information for node i for each relation r in
R. To prevent the gradient problem in training, a residual
connection (He et al., 2016) is employed starting from
the input layer of R-GCN to the output of query-attention.
That is, a global and local-aware node representation after
concatenating the outputs of R-GCN and query-attention is,

h̃i = [h(L)
local,i, hglobal] + Wresh

(0)
local,i (7)

where Wres is the linear projection for matching dimensions.
Finally, we concatenate h̃i with the query vector for each
node and fed into a final feed-forward networks fo for gen-
erating the distribution over candidates and we train the
model to maximize the likelihood of observations,

P(c|q,Cq, S q) ∝ exp(max
i∈Mc

fo([q, h̃i])) (8)
whereMc is the set of nodes whose mention is candidate
c. The max operation is to select out the highest prediction
probability node from all of that candidate entity.

4. Experiments
We introduce our experiments in this section. Firstly, two
major experiments including position bias evaluation and
comparison experiment are introduced. We also report the
estimated time and computing resources required during
the experiment, because we believe this will be helpful for
other future works.

4.1. Position Bias Evaluation

Compared to our backbone in (De Cao et al., 2019), Pos-
QAGN additionally applies the positional embedding on
the entity mention for each node. We assume that the po-
sition information can help the Multi-hop QA system to
determine whether an entity is an answer or not. To further
support our assumption, we first visualize the positional dis-
tribution of the answer entities and other entities in Figure
3, which counts the relative frequency of entity mention
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Model Types Model Train NLL Train Acc. Val. NLL Val. Acc.

Rule
Random - 11.75 - 10.75

Max-Mention - 11.90 - 11.00
Majority-Candidate-per-Query-Type - 58.17 - 28.00

Sequence BiDAF (Seo et al., 2017) 2.08 34.91 2.11 28.12

Graph
Entity-RGCN (De Cao et al., 2019) 1.82 44.84 2.09 35.80

Pos-QAGN (Early) 1.72 48.74 (↑) 2.10 36.63 (↑)
Pos-QAGN (Late) 1.68 50.29 (↑) 2.09 39.30 (↑)

Table 2. Performance comparison for different models in three categories (rule-based models, sequence neural model and graph neural
models) in our training and validation set. We report the metrices in both loss and accuracy.
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Figure 3. Distribution of entity position in the support document

appearing in various positions of the support document. It
can help us to identify whether a candidate is answer is re-
lated to its position in the document. If there is a difference
for positional distributions between answer and non-answer
candidates, simply using position information might dis-
tinguish whether an entity is an answer and surpass the
coin-flipping baseline.

To further quantify how much information about answer
in the position of the entity, we train a binary classifier
that takes the position embedding of the candidate entity
mentions as input, and predicts whether the candidate is the
answer. The experiment is conducted on our small dataset
with a three-layer feed forward networks. The dimensions
are set to be 512, 128, 64, respectively. We use the cross-
entropy as the loss and train the classifier with maximum
likelihood estimation. The result is reported in Table 3.

4.2. Comparison Experiment

Our major contribution is landing on the improvement of
model performance by two proposed modules: positional
injection and query-attention mechanism, we will domi-
nantly focus on the comparison with baselines and ablation
study on each individual module in our experiment. We
also further compare patterns in the attention distribution
for three attentive models in our experiments, and analyze
how the query-attention works.

Hyper-parameters. For two versions of Pos-QAGN, our
model has 256-dimensional hidden states for node dimen-
sion reduction and query embedding, and 512-dimensional
node representations during message propagation. To
match the dimension with the R-GCN module, we also use
512-dimensional hidden states for positional embedding
and query attention. For the last feed-forward networks for
outputting the answer distribution, the dimensions are 1024
and 256, respectively.

Epoch Train Val.

Acc. Loss P. R. F1. Acc. Loss P. R. F1.

1 89.27% 108.6 0.84 0.55 0.661 45.8% 43.31 1 0.5 0.667
10 90.2% 15.89 1 0.5 0.667 45.8% 21.22 1 0.5 0.667

Table 3. Training result for the position bias binary classifier on
both training and validation sets.

Training Details. As mentioned, we do not fine-tune the
ELMo layers during our online training. We use all three-
layer hidden states from ELMo embedder by concatenating
them together. Following (De Cao et al., 2019), we set
the hop number of R-GCN to be 3. We train the models in
mini-batch with size at 32 by ADAM (Kingma & Ba, 2014).
The learning rate is set to be 1 × 10−4. As our dataset is
much smaller than the original WikiHop, we adopt dropout
(Srivastava et al., 2014) after each layer with a drop rate
of 0.25. Finally, we train all models with 10 epochs as
maximum and employ validation loss as the criterion with
3 epochs patience to implement early stopping.

Baseline. To quantify the improvement brought by our
proposed module, we select the backbone model we based
on as our major baseline (De Cao et al., 2019). We also
reproduce and test four baselines as reported in (Welbl et al.,
2018) to confirm the advantage of the graph-based models
also existing in our sub-dataset:

i) Random: We start by picking a random candidate for
each sample. This gives us the minimum accuracy that any
model should surpass.

ii) Max-Mention: For each sample, the candidate that occurs
most frequently in the support documents is picked. If there
is a tie, we randomize over the remaining candidates. The
result is almost identical to the Random baseline, indicating
that the dataset was constructed in a way that does not show
any bias for frequency.

iii) Majority-Candidate-per-Query-Type: In training, this
model simply counts the correct answers for each query
(e.g., place_of_birth), then it simply output the candi-
date that has occurred the most with that query in testing.
This baseline achieves considerable success when testing
(29.20%), indicating that certain candidates indeed happen
more frequently with certain query types.

iv) BiDAF: To compare GNN-based model to a strong
LSTM-based QA architecture, we decided to report the
Bi-directional Attention Flow (BiDAF) as an end-to-end al-
ternative (Seo et al., 2017). The model was initially released
to predict an answer span on a given document, working



MLP Coursework 4 – Final Report ()

Model Description Model Acc. Top-2 Top-5
Random 11.27 17.6 18.4

Baselines in (Welbl et al., 2018)
Max-Mention 13.00 22.00 22.60

Majority-Candidate-per-Query-Type 29.20 34.20 34.60
BiDAF 29.42 39.28 56.03

Baseline in (De Cao et al., 2019) Entity-RGCN 37.63 52.15 73.42

Ours Pos-QAGN (Early) 39.06 (↑) 52.76 (↑) 72.60
Pos-QAGN (Late) 37.63 51.33 72.19

Table 4. Performance comparison for different models in our splited testing set in terms of accuracy (Acc.), Top-2 and Top-5 precision.

robustly on QA tasks like SQuAD where the answer has to
be a segment of text (Rajpurkar et al., 2016). In order to
train the model on multi-document QA task, we follow the
method proposed by (Welbl et al., 2018) to concatenate all
support documents into one large sequence as the input of
this model. To suit with our smaller dataset, we downscale
the default parameters and set the hidden size down to 15,
the batchsize to 16 and train for 2,500 iterations.

Our comparison results in training and validation are shown
in Table 2, and the testing are reported in Table 4. We evalu-
ate our models by the accuracy and negative log-likelihood
loss (NLL) for training and validation, and top-K precision
with K = 1, 2, 5 which counts correct if ground truth are in
the K highest predictions in testing.

Abalation and Case Study. To further determine the
sources of improvements, we conduct the ablation study for
our two full models (Pos-QAGN Early and Late version) on
validation set (see Table 5) by re-runing the models without
one or both of query-attention and positional injection. To
better understand the mechanism of query-attention. We
randomly picked 4 samples in the validation set from the
correct predictions given by all three models equipped with
the query-attention, and further visualize the attention distri-
bution over candidates in Figure 4. We exclude the attention
weights that not belong to the candidates and sum all the
weights for each candidate.

4.3. Experiment Details

We started our experiments with the original dataset of
WikiHop, and we found that graph generation has a huge
storage overhead. According to our estimates, it will take
about 432 hours to run graph generation for the complete
dataset on an Intel(R) Xeon(R) E5-2650 @ 2.2GHz CPU.
At the same time, the generated graph with padding will
take up about 1034GB of storage. Therefore, we use the
graph structure in the Deep Graph Library (Wang et al.,
2019), which stores the graphs with a serialized version for
saving storage. Furthermore, we set the training process to
load data only when it needs on a batch basis. By doing so,
the storage of all entity graphs could be reduced to around
23 GB. However, this would be more time-consuming
during training, as some operations such as padding need to
be repeated per epoch. We estimate that training on the full
dataset will take approximately 120 hours on one NVIDIA
TITAN X GPU for 10 epochs. The training of graph-based
models is also memory-hungry. When the batch size is
set to 32, the peak memory overhead of model training

Description Model Train Acc. Val. Acc.

Full Model Full (Early PE Inject.) 48.74 36.63
Full (Late PE Inject.) 50.29 39.30

Components
w/o Query-Attention (Early) 48.49 (↓0.25) 38.27 (↑1.64)
w/o Query-Attention (Late) 49.20 (↓1.09) 37.86 (↓1.44)

w/o PE Injection 44.85 (↓3.89, ↓5.44) 37.65 (↑1.02, ↓1.65)

Table 5. Ablation study on query-attention mechanism and posi-
tional injection in Pos-QAGN model.

will reach 104GB. Therefore, considering both of time and
computing resources, we will conduct experiments on the
sub-dataset as described in previous section.

5. Results and Discussion
5.1. Position Bias

Obviously, in Figure 3, the answer entities are more concen-
trated in the front position of each document than non-
answer entities, which means the position information
might help the QA system to identify whether a candidate
is an answer.

The quantitative result predicted by our binary classifier in
Table 3 shows that the predicted accuracy of whether a can-
didate mention is an answer or not is over 90%. However,
as the number of answer entities and non-answer entities is
highly unbalanced (around 1:10), this high accuracy might
be not so meaningful. On the other hand, the 0.55 recall
can convince us that there are more than half of the answer
entity can be predicted correctly. The 0.66 harmonic mean
of precision and recall also surpass the 50% baseline of
coin-flipping prediction.

In a nutshell, the location of the entity does imply the
position bias of whether the entity is an answer in the Multi-
hop QA dataset of our experiment. Therefore, it might be
possible to improve the overall accuracy by injecting the
positional information into the GNN-QA system to com-
plement the positional information of the entity mention in
each node.

5.2. Comparison with Baseline

Given that we compare our model in the sub-set of Wiki-
Hop, we first look at the comparison between our Entity-
RGCN baseline with the sequence model (BiDAF). Table
4 shows that the Entity-RGCN still outperforms than 4
baselines reported in (Welbl et al., 2018), including both
rule-based and RNN-based neural model. This is consistent
with the comparison result in (Welbl et al., 2018). It demon-
strates that regardless of the size of the dataset, graph neural
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Figure 4. Visualization for the query-attention distribution of QAGN in four picked data sample with correct predictions: WH_dev_3,
WH_dev_6, WH_dev_8 and WH_dev_15.

networks have advantages than the RNN-based model in
Multi-hop QA tasks: models based on graph neural net-
works can achieve lower loss on the training set, and have
better generalization accuracy with a considerable margin.

Subsequently, we compare our two Pos-QAGN with Entity-
RGCN. Table 2 reveals that the model equipped with our
two proposed modules can contribute to the baseline to
achieve lower training loss, where the late and early injec-
tion of positional embedding reduces the training loss by
0.14 and 0.1, respectively. This shows that our model can
have a stronger capability to fit the dataset. We also observe
the improvement in validation accuracy of our Pos-QAGN
compare to baseline by 0.83% and 2.9%.

Nevertheless, in testing, only the early injection of posi-
tional embedding (Pos-QAGN with Early Injection) still
outperforms Entity-RGCN in accuracy, with improvement
at around 1.5%. The late injection Pos-QAGN has the
same prediction accuracy as the baseline. It might because
our test set of 489 samples is not large enough to esti-
mate the disparity of generalization performance between
Pos-QAGN (Late) and the baseline. And we have also
observed that with the relaxation of precision calculation
(K increases), the improvement of our model gradually
decreases, and even worse performance is achieved when
calculating Top-5 precision. The Pos-QAGN (Late) model
has lower Top-2 and Top-5 precision compare to baseline,
and Pos-QAGN (Early) only has the advantage in Top-2
precision with 0.61 improvement, which is much smaller
than the improvement in accuracy. It might because query-

attention can make the prediction distribution to be spike,
which forces the output prediction networks to more focus
on a part of nodes in the graph, and we will discuss this
later.

5.3. Ablation Study

Positional Information. In Table 5, we observe that com-
pare with our two full models, the model without positional
injection (QAGN) has considerable performance drops in
the training set. But in validation, removing positional
information decrease the accuracy of the late-inject full
model while increasing the accuracy of our early-inject full
model.

Query-attention Mechanism. We do perform one last ab-
lation to remove the query-attention mechanism, which
forces the model to only look at local contextualized in-
formation for each node. As expected, the training perfor-
mance drops considerably by removing the query-attention
mechanism, with gap at 1.64 and 1.44 for two full mod-
els. However, we again observe that there is an increase of
validation accuracy by removing the early-inject full model.

The possible reason for this in-consistent observation might
be either the full model overfit the training set, as we did
not fine-tune hyperparameters for every single model but
majorly following the setting in (De Cao et al., 2019), or the
small size of validation set results in a noisy performance
estimation. We remain finding this answer as the future
work.
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5.4. How Does Query Attention Work?

In general, we found similar patterns in the attention dis-
tributions of three attentive models. Query-attention tends
to give high weights to a small number of nodes, thereby
enhancing their saliency in the global representation. Subse-
quently, we found that most of the nodes with high attention
weight are the answer nodes, or have a strong relationship
with the query. For example, in the WH_dev_6, answer
nodes bad boy records and the record label having the same
token in the query are assigned with the highest weight. We
also find that the query attention distribution is quite spik-
ing and sharp, as the case in Figure 4(d), ohannesburg and
gauten account for more than 90% over the weight. This
may cause the predictive distribution P(c|q,Cq, S q) to be
more centralized to small group of candidates, which makes
the query-attention not very robust that if the answer node
is not assigned with the highest weight, query attention
may confuse the prediction of the QA system. Given that,
it is no surprise to see the model has less advantage in Top-
K precision if K goes larger. Furthermore, it might also
cause the model easier to overfit, which requires a finer
hyperparameter search to maximize the performance.

5.5. Early Injection vs. Late Injection

We have shown that the query-attention mechanism en-
hances the node representation related to the query in the
global representation, and the positional information is use-
ful in WikiHop dataset to find the correct answer. But,
either early or late positional injection, which is better?

Figure 4 shows the comparison in attention distribution
grouped by different types of injection. It turns out early
injection tends to learn a "softer" attention distribution,
i.e., the weights are more scattered. The attention weights
learned by the late injection model are more centralized to
a particular few candidate nodes, and unfortunately, which
might be not related to the ground truth answer (e.g., johan-
nesburg in WH_dev_15). This means that once the attention
distribution cannot correctly reflect the structural bias be-
tween the answer and other candidates, it will be harder
for the late-injection model to correct the node preference
in the global representation. It might be one explanation
why we see that Pos-QAGN Late has more degradation of
model performance on the test set than the early one.

Another interesting observation is the position embedding
plays an important role in RGCN’s message propagation
and helps the query-attention to ignore distractions in some
cases. In Figure 4(b) and (c), all attentive models give the
answer node and a non-answer candidate node with consid-
erable higher weight than other candidates, but for QAGN
and late inject model which do not involve positional infor-
mation to local message passing, they pays more attention
to the non-answer node (distractor). On the other hand,
the early inject model that brings the location information
into the local message propagation effectively reduces the
weight of the distractor and ensures that the answer node
has the highest attention weight.

To conclude, the early injection of positional information
will help the GNN module to better capture the local infor-
mation, resulting in the global representation more accu-
rately reflecting the importance of answer nodes. However,
in terms of accuracy, it might worth further studying that
whether late injection can surpass the early one by other
methods to avoid overfitting.

6. Related work
We start by identifying a set of baseline models that would
require manageable amounts of computing and memory on
multi-document question answering tasks. The simplest
baseline is FastQA (Weissenborn et al., 2017), an RNN-
based architecture requiring minimal compute. A more
complex baseline is BiDAF (Seo et al., 2017), a hierarchical
multi-stage architecture that models the representations of
a sequence at different levels of granularity. It utilizes
character-level, word-level, and contextual embeddings in
combination with bi-directional attention flow.

Other than entity graphs, there have been other attempts
to use explicit structures to reasoning (Ding et al., 2019;
Thayaparan et al., 2019; Qiu et al., 2019). One successful
method extracts explicit reasoning chains from documents,
which are simply sequences of sentences leading to the
answer (Chen et al., 2019). These chains are then fed into a
BERT-based architecture to predict the answer.

Despite the promising future of graph neural networks
and other models that utilize explicit representations,
transformer-based models (Zaheer et al., 2020) are currently
state-of-the-art on WikiHop. These models still consider
all support documents as long sequence. To overcome the
inability to process long sequences of text of Transformer
(Vaswani et al., 2017), one specific model achieved con-
siderable success is the Longformer (Beltagy et al., 2020),
which uses a modified attention operation that combines
windowed local-context self-attention with an end task mo-
tivated global attention; which scales linearly instead of
quadratically with sequence length.

A promising class of models called Graph Transformers
was also shown to be effective in natural language genera-
tion tasks conditioned on graph structures such as knowl-
edge bases (Koncel-Kedziorski et al., 2019). We theorize
that utilizing these models in conjunction with entity-graphs
might utilize the best of both worlds.

7. Conclusions
In this work, we proposed the positional injection and query-
attention global representation to improve the GNN-based
multihop QA system. Due to the limitation in time and
computing resources, we evaluate and compare our model
with baselines including Entity-RGCN in (De Cao et al.,
2019) on part of WikiHop dataset. The result confirms
that our proposed modules in Pos-QAGN contribute to the
testing accuracy with around 1.5% improvements. The
ablation and case study also further verify the effectiveness



MLP Coursework 4 – Final Report ()

of each individual component and their collaboration. The
future work includes testing our model on more large-scale
dataset and apply two proposed modules on other GNN-QA
models to further verify the generalization and adaptability.
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